## Modeling assignment



## Assignment (3)

1- For the liquid-level system shown in figure (1), the steady-state flow rate through the tanks is $\bar{Q}$ and steady-state heads of tank 1 and tank 2 are $\bar{H}_{1}$ and $\bar{H}_{2}$ respectively. At $\mathrm{t}=0$ the inflow rate is changed from $\bar{Q}$ to $\bar{Q}+q_{1}$, where $q$ is a small change in the inflow rate. The corresponding changes in the heads ( $h_{1}$ and $\mathrm{h}_{2}$ ) and changes in flow rates ( $\mathrm{q}_{1}$ and $q_{2}$ ) are assumed to be small. The capacitances of tank 1 and tank 2 are $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$, respectively. The resistance of the valve between the tanks is $R_{1}$ and that of the outflow valve is $R_{2}$. Assuming $q$ as the input and $q_{2}$ as the output, derive the transfer function for the system.


2- Refer to the mechanical system shown in fig. 2-a,b. Obtain the transfer function $\sqrt{ }$ relating mass displacement $y$, to the applied force $f_{0}(t)$.


Figure (2-a)


Figure (2-b)

## Modeling assignment

## BENHA UNIVERSITY

## Automatic control

## Faculty of engineering


$4^{\text {th }}$ Vear (Power) 2013/2014

3- Consider the electrical system shown in figure (3). At $t=0$ the input voltage is changed from $v_{i}$ to $\bar{v}_{i}+v_{i}$ where $v_{i}$ is a small change in the input voltage. The corresponding changes in the currents ( $i_{1}$ and $i_{2}$ ) are assumed to be small. The resistance and inductance in each loop of the circuit are $R_{1}, L_{1}$ and $R_{2}, L_{2}$ respectively.

- Write the governing equation assuming zero initial condition.
- Draw the corresponding block diagram.
- Derive the transfer function of the system when $v_{i}$ as the input and $v_{o}$ as the output.

Figure (3)


4- Consider the dc servomotor system shown in Figure (4). Assume that the armature inductance is negligible. (It is not shown in the circuit.) Obtain the transfer function between the output $\theta_{2}$ and the input $\boldsymbol{e}_{a .}$. In the diagram, where;
$\theta_{1}$ = angular displacement of the motor shaft, rad $\quad e_{b}=$ back emf. V
$\theta_{2}=$ angular displacement of the load element, rad $i_{a}=$ armature current, A
$J_{1}=$ moment of inertia of the motor's rotor, $\mathrm{kg}-\mathrm{m}^{2} \quad i_{f}=$ field current, A
$J_{2}=$ moment of inertia of the load, $\mathrm{kg}-\mathrm{m}^{2} \quad n_{1}=$ number of teeth of gear 1
$T=$ torque developed by the motor, $\mathrm{N}-\mathrm{m} \quad \mathrm{n}_{2}=$ number of teeth of gear 2
$e_{a}=$ applied armature voltage, $V \quad \boldsymbol{R}_{a}=$ armature resistance, $\Omega$


Figure (4) DC servomotor system

## Modeling assignment

BENHA UNIVERSITY


Mechanical engineering department

Faculty of engineering

$4^{\text {th }}$ year (Power) 2013/2014

5- An armature controlled -dc motor with a resistance $R$ added in the armature loop is used in speed control system shown in figure(5). Obtain the transfer function of the system relating the input $e_{r}$ to the output speed $\omega$.


6- Consider the Water-Level Control System shown in figure (6) The level $C$ is measured by means of a float, and a lever is used as a summing junction to determine a measure $e$ of the error with the desired level $r$. From this mechanical input, the controller and amplifier set a pneumatic output pressure $P_{o}$ of sufficient power to operate the pneumatic actuator, which adjusts the control valve opening $x$ to control inflow $q$ of the tank. Assume the pneumatic actuator transfer function is $\frac{P_{0}}{x}=\frac{A / K}{R_{f} C_{f}+1}$ Determine the overall transfer function $\frac{C(s)}{R(s)}$.


## Modeling assignment

BENHA UNIVERSITY

Mechanical engineering department

Faculty of engineering

## Automatic

 control
$4^{\text {th }}$ year (Power) 2013/2014

7- Consider the hydraulic servo system shown in Figure (7). Assuming the load reaction forces is not negligible. Drive a mathematical model of the system. Assume also the mass of the power piston is included in the load mass m .


8- Consider the liquid-level control system shown in Figure (8). The inlet valve is controlled by a hydraulic integral controller. Assume also that the disturbance inflow $q_{d}$, which is a small quantity, is applied to the water tank at $\mathrm{t}=0$, This disturbance head causes the head to change in from $\bar{H}$ to $\bar{H}+h$. This change results in a change in the outflow rate by $q_{o}$. Through the hydraulic controller, the change in head caused a change in inflow rate from $\bar{Q}$ to $\bar{Q}+q_{i}$. The integral controller tends to keep the head. Assume that the change in the inflow rate $q_{i}$ is negatively proportional to the change in the valve opening y. Obtain the transfer function $H(s) / Q_{d}(s)$.


Modeling assignment

BENHA UNIVERSITY

Mechanical engineering department

Faculty of engineering

$4^{\text {th }}$ year (Power) 2013/2014

9- Consider the liquid-level system shown in figure 9. At $t=0$ the inflow rate is changed from Q to $\overline{\bar{Q}}+q_{1}$, where q is a small change in the inflow rate. The corresponding changes in the heads $\left(h_{1}\right.$ and $\left.h_{2}\right)$ and changes in flow rates $\left(q_{1}\right.$ and $\left.q_{2}\right)$ are assumed to be small. The capacitances of tank 1 and tank 2 are $C_{1}=A_{1}$ and $C_{2}=A_{2}$, respectively. The resistance of the valve between the tanks is $R_{1}$ and that of the outflow valve is $\mathrm{R}_{2} . \quad \overline{\boldsymbol{Q}}+\boldsymbol{q} \longrightarrow \Longrightarrow$
Derive the transfer function for the system when:
a- $q$ as the input and $h_{2}$ as the output.
$\mathrm{b}-\mathrm{q}$ as the input and $\mathrm{q}_{2}$ as the output.
$c-q$ as the input and $h_{1}$ as the output.


10- Consider the DC servomotor system shown in Figure (10).
Drive the equations describing the system in time and $s$-domain, then draw the corresponding block diagram, and obtain the transfer function $\left(\mathbf{E}_{o} / \mathbf{E}_{i}\right.$.


Figure (10)
11- Derive the transfer function of the operational amplifier (Op-amp) circuit relating $\quad \mathbf{E}_{a} / \mathbf{E}_{i}$.


Modeling assignment

## BENHA UNIVERSITY <br> 

Mechanical engineering department

|  | Faculty of engineering <br> $4^{\text {th }}$ vear (Power) 2013/2014 |
| :---: | :---: |
| Automatic |  |
| control |  |
|  |  |

12- Derive the transfer function of the electronic controller consisting of operational amplifiers (Fig. 12).

Figure (12)


13- A hydraulic servomechanism with mechanical feedback is shown in figure 13.

- Obtain the equations describing the system.
- Draw the corresponding block diagram to find the transfer function $Y(S) / X(S)$


Modeling assignment

BENHA UNIVERSITY


## Automatic

 controlFaculty of engineering

$4^{\text {th }}$ vear (Power) 2013/2014

14- For the Pneumatic controller of the nozzle-flapper type shown in figure (14),
a- Deduce the equations relating the system elements in time domain and s-domain.
b- Find the transfer function if $R_{i}=0, \quad c$ - Find the transfer function if $R_{l}=\infty$


15- Write the differential equation describing the thermal systems shown in figures (15-a,b), Assume $Ө$ a $=0$


Figure (15-a)


Figure (15-b)

## Modeling assignment



16- A hydraulic servomechanism controlled by electro-mechanical feedback as shown in figure 1. The armature controlled DC-motor which rotate at constant speed is used to adjust the actuating displacement $e(t)$ via the rack and pinion in order to convert the rotary displacement into linear as shown in figure. Assume $v_{\text {emf }}=k_{b} \dot{\theta}_{1}$

- Obtain the equations describing the system in time and s-domain
- Draw the corresponding block diagram and find the transfer function $V_{i}(s) / V_{0}(s)$


Figure (16)

